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Abstract. In this paper, an entanglement measure due to quasi-mutual entropy from initially entangled
mixed states of a three-level atom interacting with a single cavity field is introduced. Detailed analytical and
explicit expressions are given taking into account an arbitrary form of the intensity-dependent coupling.
Despite its simplicity the model exhibits a very broad range of intricate physical effects and it is widely
used in quantized theories of laser. We show that quantum revivals are possible for a broad continuous
range of physical parameters in the case of initial coherent states. Entanglement degree effects are shown
to be very sensitive to the initial state of the system. Numerical calculations under current experimental
conditions are taken into account and it is found that the intensity-dependent coupling changes the general
features dramatically.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 03.67.Hk Quantum communication – 42.65.-k Nonlinear optics – 32.80.Rm Multiphoton
ionization and excitation to highly excited states (e.g., Rydberg states)

1 Introduction

With the recent rapid developments in quantum informa-
tion there has been a renewed interest in multiparticle
quantum mechanics and entanglement. The properties of
states between the pure, maximally-entangled, and com-
pletely mixed limits are not completely known and are
now under discussion [1–3]. Entanglement has occupied a
central place in modern research because of its promise of
enormous utility in quantum computing, quantum infor-
mation, etc. A major thrust of current research is to find
a quantitative measure of entanglement for general states.
Approaches to this question based on the eigenvalue spec-
tra of the system density matrices such as entropy meth-
ods, have given necessary but not sufficient conditions for
particular states. Recently important questions have been
raised [4] concerning the ability of entropy methods to de-
cide on the question of separability of a composite state.
There are a number of measures of entanglement for a bi-
partite system. The entanglement of formation, the entan-
glement of distillation [5], the concurrence [6] and relative
entropy [7] are some of these measures. A method using
quantum mutual entropy to measure the degree of entan-
glement in the time development of the Jaynes-Cummings
model has been adopted in [8] and the case of the two-level
atom with squeezed state has been studied [9]. The ques-
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tion of how mixed a two-level system and a field mode
may be such that free entanglement arises in the course of
the time evolution according to a Jaynes-Cummings type
interaction has been considered [10,11].

It is rather interesting to note that entangled states
play a crucial role in quantum computation as well, and it
is the entanglement between qubits that gives a quantum
computer its inherent advantage. However, works dealing
with the entanglement in mixed states have been limited
to the two-level systems [8–11]. It is therefore desirable
to investigate the entanglement of the three-level systems.
From the viewpoint of the Phoenix-Knight [12,13] entropy
formalism, we have investigated the quantum field entropy
and entanglement of a coherent field interacting with a
three-level atom interacting with a single mode [14] and
multimode [15]. However the method used in those papers
cannot be applied when the system is taken to be initially
in a mixed state.

In the present work we consider the situation for which
the three-level system is initially in a mixed state. We es-
sentially generalize the entanglement degree due to the
quasi-mutual entropy, usually employed in the two-level
system, to the three-level system interacting with a single
cavity mode, including an arbitrary form of the intensity-
dependent coupling. The physical situations which we
shall refer to, belong to the experimental domains of cav-
ity quantum electrodynamics. After the realization of a
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two-photon single mode maser operated in a high-Q cav-
ity [16–18], a large amount of experimental and theoretical
research has been done on the atomic two-photon transi-
tion processes in a cavity. Our work is organized as follows:
in Section 2, we rewrite the dynamics of the three-level
atom interacting with a cavity field from a point of view
based on the entangled dressed-state eigenbasis and give
exact expression for the unitary operator Ut. With the
help of an appropriate coordinate system, in Section 3 we
investigate the properties of the entanglement degree due
to the quasi-mutual entropy. We devote Section 4 to give
our discussion in which we assumed that the electromag-
netic field is in coherent, and that the atom is initially in
the mixed state. Finally, a summary of the main points
of this work ends the paper and a few avenues for further
investigations are indicated.

2 The system and its dynamics

The scheme we are going to discuss exploits the passage
of a single atom only through the cavity [18]. We wish to
underline the relevance of this aspect from an experimen-
tal point of view. Preparing and controlling a single atom
is certainly much easier to achieve with respect to the case
when the manipulation of many atoms is required. In ad-
dition, taking into consideration the low efficiency [19] of
the atomic state detectors today used in laboratory, con-
ditional measurement procedures involving one atom only
instead of many ones, have to be preferred. The dynam-
ics of several Hamiltonian models describing such systems
is exactly treatable and, in most cases, testable in the
laboratory. The point to be appreciated is indeed that,
studying such systems, one has the opportunity to induce
entanglement and to control its evolution in a multipar-
tite physical system. In this paper, we consider the atomic
system displayed in Figure 1. We study a three-level atom
injected into a cavity field in a V -configuration, where
the dipole-allowed transitions between the lower level |a〉A
and the upper levels |b〉A and |c〉A are nonresonant with
the cavity mode. The transition between the two upper
levels is dipole forbidden. Furthermore, we assume the in-
teraction including an arbitrary form of nonlinearity of
the intensity-dependent coupling. In the rotating wave ap-
proximation, the interaction of the cavity mode with the
injected atom is described by the Hamiltonian (� = 1)

Ĥ = ωaŜaa + ωbŜbb + ωcŜcc +Ωâ†â

+ π̂
(
γ1Ŝba + γ2Ŝca

)
+
(
γ1Ŝab + γ2Ŝac

)
π̂†. (1)

Here, π̂ = â ⊗ f(â†â), where â and â†, respectively, are
the annihilation and the creation operators for the mode
of the cavity field, and Ω the field frequency. We denote
by γif(a†a) an arbitrary intensity-dependent coupling (see
for example Refs. [20–22]). The operator Ŝii (i = a, b, c)
describes the atomic population of level |i〉A with energy
ωi and the operator Ŝij , (i �= j) describes the transition
from level |i〉A to level |j〉A. The frequencies of transition

Fig. 1. The V -type three-level atom interacting with a single-
mode field. The levels |a〉A, |b〉A, and |c〉A have the energy
values �ωa, �ωb and �ωc, respectively. The transitions |a〉A −→
|b〉A, and |a〉A −→ |c〉A, are coupled to one and the same dis-
crete intra-cavity mode â with an eigenfrequency Ω. The de-
tunings of the levels |a〉A, |b〉A, and |a〉A, |c〉A, are ∆1 = ωab−Ω
and ∆2 = ωac − Ω, respectively.

between the levels |a〉A and |b〉A is ωab, and between the
levels |a〉A and |c〉A is ωac. The parameters γi are corre-
sponding atom-field coupling constants.

In general, mixed states are entangled if it is impos-
sible to represent the density operator as an incoherent
sum of factorizable pure states [23]. In pure-state quan-
tum mechanics the state of the system is usually repre-
sented by a normalized wavefunction, which is a unit vec-
tor in a Hilbert space. If the system is in the pure state
|ψ(t)〉 then ρ(t) is simply the projector onto this state, i.e.,
ρ(t) = |ψ(t)〉〈ψ(t)|, in such a way that ρ2(t) = ρ(t) and
Trρ2(t) = 1. A mixed state instead is defined by the class
of states which satisfy the inequality Trρ2 < 1. We assume
that, before entering the cavity, the atom is prepared in a
mixed state. To this end, the initial state of the atom can
be written in the following form

ρA(0) = ς1Ŝaa + ς2Ŝbb + ς3Ŝcc ∈ SA, (2)

where ςi ≥ 0, and ς1 + ς2 + ς3 = 1. Also we suppose that
the initial state of the field is given by

ρF (0) = |�〉〈�| ∈ SF , (3)

where |�〉 =
∞∑

n=0
bn|n〉, and b2n = |〈�|n〉|2 being the prob-

ability distribution of photon number for the initial state,

with the normalization condition
∞∑

n=0
b2n = 1. The con-

tinuous map E∗
t describing the time evolution between

the atom and the field is defined by the unitary operator
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generated by Ĥ such that

E∗
t : SA −→ SA ⊗ SF ,

E∗
t ρ = Ût (ρA(0) ⊗ ρF (0)) Û∗

t , (4)

Ût ≡ exp

(
−it

Ĥ

�

)
.

When we take the two-photon resonance condition ∆1 =
∆2 = ∆, this unitary operator Ut can be written as

Ût =
∞∑

n=0

{
exp

(
−itE(n)

1

) ∣∣∣Ψ (n)
1

〉〈
Ψ

(n)
1

∣∣∣+ exp
(
−itE(n)

2

)
×
∣∣∣Ψ (n)

2

〉〈
Ψ

(n)
2

∣∣∣+ exp
(
−itE(n)

3

) ∣∣∣Ψ (n)
3

〉〈
Ψ

(n)
3

∣∣∣}
+ exp

(
−itE(0)

) ∣∣∣Ψ (0)
〉〈

Ψ (0)
∣∣∣ , (5)

where

E(0) = ∆,

E
(n)
j = (j − 1) 2(2−j)

[
δ + (−1)jµn

]
, j = 1, 2, 3 (6)

are the eigenvalues with

µn =
√
γ2
1nf

2(n) + γ2
2nf

2(n) + δ2,

δ = ∆/2, and the detuning parameter∆ is defined as ∆ =
ωab−Ω = ωac−Ω. The parameter µ(n) is a modified Rabi
frequency. Hence we can easily express the eigenvectors of
an atom in the cavity in the interaction picture in the form

|Ψ (0)〉 = |0〉 ⊗ |a〉A ,
|Ψ (n)

1 〉 = C11Φ
(n)
2 − C13Φ

(n)
3 ,

|Ψ (n)
2 〉 = C21Φ

(n)
1 + C22Φ

(n)
2 + C23Φ

(n)
3 ,

|Ψ (n)
3 〉 = C31Φ

(n)
1 + C32Φ

(n)
2 + C33Φ

(n)
3 , (7)

where 
Φ

(n)
1

Φ
(n)
2

Φ
(n)
3

 =

 |n〉 ⊗ |a〉A
|n− 1〉 ⊗ |b〉A
|n− 1〉 ⊗ |c〉A

 ,

µ1 =
√
γ2
1nf

2(n) + γ2
2nf

2(n)

C11 =
γ2f(n)

√
n

µ1
, C13 =

γ1f(n)
√
n

µ1
,

C21 =
(δ + µn)√
2µ2

n +∆µn

, C31 =
(δ − µn)√
2µ2

n −∆µn

,

C22 =
γ1f(n)

√
n√

2µ2
n +∆µn

, C32 =
γ1f(n)

√
n√

2µ2
n −∆µn

,

C23 =
γ2f(n)

√
n√

2µ2
n +∆µn

, C33 =
γ2f(n)

√
n√

2µ2
n −∆µn

·

Having obtained the explicit form of the unitary opera-
tor Ut, the eigenvalues and the eigenfunctions for the sys-
tem under consideration, we are therefore in a position to
discuss the entanglement of the system.

It is important to point out that the increased in-
sight into the dynamics of the three-level systems may
be helpful in developing quantum information theory [24].
Recently, there is much interest in three-level quantum
systems to represent information. It was demonstrated
that key distributions based on three-level quantum sys-
tems are more secure against eavesdropping than those
based on two-level systems [25–27]. Key distribution pro-
tocols based on entangled three-level systems were also
proposed [28]. The security of these protocols is related
to the violation of the Bell inequality. The three-level
system provides in this context a much smaller level of
noise [29,30]. Rydberg atoms which cross superconductive
cavities are an almost ideal system to generate entangled
states and to perform small scale quantum information
processing [31]. In this context entanglement generation
of three-level quantum systems was reported [24,32–35].

3 Derivation of the entanglement degree

Quantifying the amount of entanglement between quan-
tum systems is a recent pursuit that has attracted a di-
verse range of researchers [5–15]. In this section, we will
apply the results obtained in the previous section to de-
rive the entanglement degree for a single three-level atom
interacting with a cavity field without using the diagonal
approximation method adapted in [8,9]. With a certain
unitary operator, the final state after the interaction be-
tween the atom and the field is given by

E∗
t ρ = Ut (ρ⊗�)U∗

t

= ς1Ut|�,�; a〉〈�,�; a|U∗
t + ς2Ut|�,�; b〉

×〈�,�; b|U∗
t + ς3Ut|�,�; c〉〈�,�; c|U∗

t . (8)

Therefore the von Neumann entropy of the total system
is given by

S(E∗
t ρ) = −ς1 log ς1 − ς2 log ς2 − ς3 log ς3. (9)

Taking the partial trace over the atomic system, we obtain

ρF
t = TrAE∗

t ρ

= ςi

3∑
i=1

|ψi(t)〉〈ψi(t)| + ς2

6∑
i=4

|ψi(t)〉〈ψi(t)|

+ς3
9∑

i=7

|ψi(t)〉〈ψi(t), (10)
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where

|ψ1(t)〉 =
∞∑

n=0

bn exp (−iδt))
(

cosµnt

+ iδ
sin(µnt)
µn

)
|n+ 1〉,

|ψ2(t)〉 = − i
∞∑

n=0

bn exp(iδt)γ1f(n)
√
n

sin(µnt)
µn

|n〉,

|ψ3(t)〉 = − i
∞∑

n=0

bn exp(iδt)γ2f(n)
√
n

sin(µnt)
µn

|n〉, (11)

|ψ4(t)〉 = − i
∞∑

n=0

bn exp (−iδt) γ1

×√
nf(n)

√
n

sin(µnt)
µn

|n+ 1〉

|ψ5(t)〉 =
∞∑

n=0

bn

(
1 − nγ2

1f
2(n)

µ2
n

+
nγ2

1f
2(n)

µ2
n

exp(iδt)

× cos(µnt) + iδnγ2
1f

2(n) exp(iδt)
sinµnt

µ3
n

)
|n〉,

|ψ6(t)〉 =
∞∑

n=0

bn

(
nγ1γ2f

2(n)
µ2

n

cos(µnt) + inδγ1γ2f
2(n)

× exp(iδt)
sin(µnt)
µ3

n

− nγ1γ2f
2(n)

µ2
n

)
|n〉 , (12)

|ψ7(t)〉 = − i
∞∑

n=0

bn exp (−iδt) γ2

×√
nf(n)

√
n

sin(µn)
µ(n)

|n+ 1〉,

|ψ8(t)〉 =
∞∑

n=0

bn

(
nγ1γ2f

2(n)
µ2

n

cos(µnt) + inδγ1γ2f
2(n)

× exp(iδt)
sin(µnt)
µ3

n

− nγ1γ2f
2(n)

µ2
n

)
|n〉 ,

|ψ9(t)〉 =
∞∑

n=0

bn

(
1 − nγ2

2f
2(n)

µ2
n

+
nγ2

2f
2(n)

µ2
n

exp(iδt)

× cos(µnt) + iδnγ2
2f

2(n) exp(iδt)
sinµnt

µ3
n

)
|n〉.
(13)

Then the von Neumann entropy for the reduced state
S(ρF

t ) is computed by

S(ρF
t ) = −

9∑
i=1

λF
i (t) log λF

i (t), (14)

where {λF
i (t)} are the solutions of

det[ ˆρ(t) − ˆλ(t) ˆN(t)] = 0, (15)

where ˆρ(t) and ˆN(t) are 9×9 matrices having the following
elements[

ˆρ(t)
]

ij
≡ 〈ψi(t)|ρF

t |ψj(t)〉, (i, j = 1, 2, 3, ...9),[
ˆN(t)
]

ij
≡ 〈ψi(t)|ψj(t)〉, (i, j = 1, 2, 3, ...9). (16)

On the other hand, the final state of the atomic system is
given by taking partial trace over the field system:

ρA
t ≡ TrFE∗

t ρ

≡ 
1|a〉〈a| + 
2|a〉〈b| + 
3|a〉〈c| + 
4|b〉〈a| + 
5|b〉〈b|
+
6|b〉〈c| + 
7|c〉〈a| + 
8|c〉〈b| + 
9|c〉〈c|, (17)

where 
i are given by


i =
3∑

k=1

{
YkC

(n)
11 C

∗(m)
ki + Yk+3C

(n)
21 C

∗(m)
ki

+Yk+6C
(n)
31 C

∗(m)
ki

}
, i = 1, 2, 3


j =
3∑

k=1

{
YkC

(n)
12 C

∗(m)
kj−3 + Yk+3C

(n)
22 C

∗(m)
kj−3

+Yk+6C
(n)
32 C

∗(m)
kj−3

}
, j = 4, 5, 6


r =
3∑

k=1

{
YkC

(n)
13 C

∗(m)
kr−6 + Yk+3C

(n)
23 C

∗(m)
kr−6

+Yk+6C
(n)
33 C

∗(m)
kr−6

}
, r = 7, 8, 9 (18)

and, Yi are given by

Yi = exp(−itE(nm)
1i ){ς1C∗(n)

12 C
(m)
i2 + ς2C

∗(n)
11 C

(m)
i1

+ ς3C
∗(n)
13 C

(m)
i3 }, i = 1, 2, 3

Yj = exp(−itE(nm)
2j ){ς1C∗(n)

22 C
(m)
j2 + ς2C

∗(n)
21 C

(m)
j1

+ ς3C
∗(n)
23 C

(m)
j3 }, j = 4, 5, 6

Yr = exp(−itE(nm)
3r ){ς1C∗(n)

32 C
(m)
r2 + ς2C

∗(n)
31 C

(m)
r1

+ ς3C
∗(n)
33 C

(m)
r3 }, r = 7, 8, 9 (19)

where, exp(−itE(nm)
ij ) = exp(−it(E(n)

i − E
(m)
j ).

Then the von Neumann entropy for the reduced state
S(ρA

t ) is computed by

S(ρA
t ) = −

3∑
i=1

λA
i (t) log λA

i (t), (20)

where λA
i (t) is given by

λA
1 (t) = − 1

3
− 2

3

(√
1 − 3ϑ1

)
cos (β) ,

λA
2 (t) = − 1

3
+

1
3
(cos (β) +

√
3 sin (β))

(√
1 − 3ϑ1

)
,

λA
3 (t) = − 1

3
+

1
3
(cos (β) −

√
3 sin (β))

(√
1 − 3ϑ1

)
,

(21)
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where

β =
1
3

cos−1

(
2 − 9ϑ1 − 27ϑ2

2(1 − 3ϑ1)3/2

)
,

ϑ1 =
1
9 + 
1
5 + 
5
9 − |
6|2 − |
2|2 − |
3|2,
ϑ2 =
1
5
9 + 
2
7
6 −
1|
6|2 −
9|
2|2 −
5|
3|2.

(22)

Using the above equations, the final expression for the
entanglement degree in the three-level system takes the
following form

IE∗
t ρ

(
ρA

t , ρ
F
t

) ≡ TrE∗
t ρ(log E∗

t ρ− log(ρA
t ⊗ ρF

t ))

= S(ρA
t ) + S(ρF

t ) − S(E∗
t ρ)

= −
9∑

i=1

λF
i (t) logλF

i (t) −
3∑

i=1

λA
i (t) logλA

i (t)

+
3∑

i=1

ςi log ςi. (23)

It is evident that, with the help of equation (23), it is
possible to study the entanglement degree of any three-
level system when the system is initially in a mixed state.

Here, for simplicity, if we confine ourselves to V -type
three-level atom interacting with a single cavity field and
if E∗

t ρ ∈ S1 ⊗ S2 is an entangled pure state, then its von
Neumann entropy is equal to 0 (S (E∗

t ρ) = 0). Moreover,
according to the triangle inequality of Araki and Lieb [36],
we have S(ρA

t ) = S(ρF
t ). Thus we find IE∗

t ρ

(
ρA

t , ρ
F
t

)
=

2S(ρF
t ).To be sure this entanglement measure can be com-

puted, like any physical quantity in quantum mechanics,
from knowledge of the density matrix which can be found
experimentally with tomography [37,38], but their rela-
tion to experimental consequences are indirect at best.
Equation (23) will be the basis of the numerical investi-
gation. As one can see, it is unlikely to express the sums
in the above equations in a closed form, however for rea-
sonably large value of n̄, direct numerical evaluations can
be performed. Interesting features resulting from the dif-
ferent parameters are discussed in the following section.

An example of a truly mixed state for which the en-
tanglement manipulations have been proven to be asymp-
totically reversible has been reported in reference [39]. It
has been proven that the positivity of the partial trans-
pose entanglement cost for the exact preparation of a large
class of quantum states under positivity of the partial
transpose operations is given by the logarithmic negativ-
ity [2], thus they have provided an operational meaning
to the logarithmic negativity. Here we focus on the time
development of the entangled state in a three-level system
by applying entanglement degree due to quasi-mutual en-
tropy [40] which is a special case of the quantum relative
entropy type measure. It provides an upper bound on the
entanglement of distillation and is more readily calculable
than it.

4 Numerical simulations

The material that is presented below demonstrates the
mathematical soundness of our treatment. Besides that, it
is of great use in performing a numerical evaluation of our
entanglement degree expression equation (23). We shall be
able to examine the influence of different parameters on
the time evolution of the entanglement degree. At a special
choice of the parameters ςi such as ς1 = 1 (ς2 = 1), i.e.,
the atom initially in the lower (upper) state, the final state
of the system becomes a pure entangled state. Therefore
it is sufficient to use von Neumann entropy in order to
measure the degree of entanglement for the above cases.
Then entanglement degree takes just twice the reduced
von Neumann entropy i.e.,

IE∗
t ρ

(
ρA

t , ρ
F
t

) ≡ TrE∗
t ρ(log E∗

t ρ− log(ρA
t ⊗ ρF

t ))

= S(ρA
t ) + S(ρF

t ) − 0;

= 2S(ρA
t ). (24)

These situations have been considered and the reduced
von Neumann entropy has been applied to analyze the
quantum fluctuations [12–15]. In a general case (i.e., ς1 �=
0 or 1), the final state does not necessarily become a pure
state, so that we need to adopt the IE∗

t ρ

(
ρA

t , ρ
F
t

)
in or-

der to measure the degree of entanglement in the present
model. Thus our initial setting enable us to discuss the
variation of the entanglement degree for different values
of the parameter ς1 of the initial atomic system. Which
means that we have presented a general framework for
entanglement degree of a three-level quantum systems,
and have shown that using quantum mutual entropy to
calculate the entanglement degree open new possibilities
for better understanding of multi-level atoms interactions
when the atom initially in a mixed state. This allows us to
study the entanglement degree of the system and convert
from pure states into mixed states, which is crucial for
many applications in quantum optics, physics and com-
puting.

We will first compare the entanglement degree ob-
tained here with that obtained when the atom initially
prepared in a pure state in order to show the validity
of our measure. In Figure 2 we show the entanglement
degree IE∗

t ρ

(
ρA

t , ρ
F
t

)
as a function of the scaled time γt

for a number state (n = 1), where the physical param-
eters are taken from references [41,42]. In Figure 2a, we
consider ζ3 = 0, and different values of the parameter
ζ1 = 0.001, 0.8 and 0.6. We assume exact resonance case
∆ = 0, and the nonlinear intensity-dependent coupling
f(n) = 1. In the case of ζ1 = 0.001, as time goes on we
note a growth in the entanglement degree, followed by a
sudden decrease, almost down to zero at nπ/2. We find
that the maximum value of the entanglement in this case
is given by IE∗

t ρ

(
ρA

t , ρ
F
t

) ≈ 2.18. When we further in-
crease the parameter ς1 ≈ 0 we find that the degree of
entanglement takes just twice value of the von Neumann
entropy i.e., IE∗

t ρ

(
ρA

t , ρ
F
t

) ≈ 2 log 3. It is interesting to see
here the periodic oscillations of the entanglement degree
in this case. When we consider ς1 = 0.8, we see that the
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(a)

(b)

Fig. 2. The evolution of the entanglement degree IE∗
t ρ

(
ρA

t , ρF
t

)
as functions of the scaled time γ1t. The intensity-dependent
atom-field coupling f(n) = 1, the detuning parameter ∆ has
zero value, ς3 = 0 and ς1 = 0.001 (sold curve), ς1 = 0.8 (dashed-
curve) and ς1 = 0.6 (dotted-curve). (a) the field initially in a
number state with n = 1 and (b) the field initially in a coherent
state with n̄ = 5.

maximum value of the entanglement degree decreases (see
Fig. 2a). Also, in this case we show that the amplitude of
the oscillations is decreased also. The maximum values of
the entanglement degree as well as the amplitude of the
oscillations are decreased when we increase ς1 further.

In Figure 2b we consider the same situation in Fig-
ure 2a but for a coherent state. In physical terms, b2n cor-
responds to the probability distribution for measurements
of the total excitation number operator on the initial
state. In the particular case of a field initially in a co-
herent state, the probability distribution is given by b2n =
exp(−n̄)n̄n/n!, where n̄ is the mean photon number of
photons present initially in the field. Let us mention that
this distribution has its maximum around n̄. It is remarked
that, the first maximum of the entanglement degree at
γ1t > 0 is achieved at the collapse time, and at one-
half of the revival time, the entanglement degree reaches
its local minimum. Meanwhile, the general feature of the
entanglement degree in the case ς1 takes values such as
ς1 ≈ 0.8 is also almost identical to that in the previous
cases (ζ1 = 0.001) but the maximum value and the am-

plitude are decreased. It has been shown that the entan-
glement degree undergoes a collapse followed by a series
of revivals (see Fig. 2b). When we consider ς1 = 0.6, we
see that the maximum value of the entanglement degree
decreases further. Also, in this case we show that the am-
plitude of the oscillations is decreased. The same result as
in Figure 2a is observed here, as we further increase the pa-
rameter ς1 ≈ 0 we find that IE∗

t ρ

(
ρA

t , ρ
F
t

)
takes just twice

value of the von Neumann entropy i.e., IE∗
t ρ

(
ρA

t , ρ
F
t

) ≈
2 log 3. To estimate the revival times of the Rabi oscilla-
tions in the limit of large one-photon detuning, we follow
an analogous procedure given in reference [43]. We assume
that the dominant contribution in the summation from
the term for which n ≈ n̄, where n̄, is the mean photon
number for which the initial photon number distribution
is maximum. Then the times of revivals tR of the Rabi
oscillations is given by tR ≈ 2π

√
2n.

Now we will turn our attention to the effect on the
entanglement degree of the nonlinearity of the intensity-
dependent coupling as an example, i.e. f(n) =

√
n, in Fig-

ure 3a, and f(n) = 1/
√
n in Figure 3b. Comparing the be-

havior in Figure 3a, with cases considered in Figure 3b, we
may say that the effect of the intensity coupling is rather
different, where the oscillating period for f(n) =

√
n is

shorter than that of f(n) = 1 case. Also, in Figure 3a
there are sharp peaks observed with some kind of period-
icity and more oscillations at the same period of time have
been observed. This can be thought of to imply that the ef-
fects on the entanglement degree of both specific intensity-
dependent coupling and the initial field photon statistics
can be counterbalanced in some special cases. The case
in which the intensity-dependent coupling is taken to be
f(n) = 1/

√
n is quite interesting where in this case the

entanglement degree function oscillates around the maxi-
mum values when the time goes on. We have shown here
a new phenomena the periodic oscillations occur in the
presence of the intensity-dependent coupling. This differ-
ence reflects the various influences of intensity-dependent
media on the interaction between atom and field. A slight
change in ςi therefore, dramatically alters the entangle-
ment. It should be noted that at a special choice of the
nonlinear intensity-dependent coupling, the situation be-
comes interesting, in this case, we find that the nonlinear
three-level system with an initially coherent fields exhibits
superstructures instead of the first-order revivals resem-
bling those manifested by the standard three-level system.
These results are similar to those obtained for an ion cou-
pled to its motional degrees of freedom in an ion trap [44].

In the following discussion we would like to highlight
another special feature of the present model. It is well-
known that, in the case of large one-photon detuning,
terms involving the ground-excited state coherence and
excited state population can be adiabatically eliminated.
The three-level system is then equivalent to an effec-
tive two-level system in which the spin associated with
the ground state sublevel may be squeezed. The effect
of the parameter ∆ which describes the mismatch be-
tween the atomic frequency and the mean frequency of the
cavity mode is considered in Figure 4. By adjusting the
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(a)

(b)

Fig. 3. The evolution of the entanglement degree IE∗
t ρ

(
ρA

t , ρF
t

)
as functions of the scaled time γ1t. The detuning param-
eter ∆ has zero value, ς3 = 0 and ς1 = 0.001 (sold
curve), ς1 = 0.8(IE∗

t ρ

(
ρA

t , ρF
t

)
+ 2.5, dashed-curve) and ς1 =

0.6(IE∗
t ρ

(
ρA

t , ρF
t

)
+ 1.5, dotted-curve). The field initially in a

coherent state with n̄ = 5, where (a) f(n) =
√

n, and (a)
f(n) = 1/

√
n.

other parameters as ς1 = 0.8 and the detuning parameter
∆/γ1 = 1, 5, 10. When the detuning considered we find
that the situation has been changed. As we increase the
value of the detuning we have more oscillations but with
time of revivals prolonged, see for example Figures 4. It
is also noted that the amplitude of the oscillation in this
model are lesser than their counterparts for the two-level
case. Finally we point out that, as we increase the value
of the detuning ∆/γ1 one can see the revival time is also
prolonged, however the amplitude of fluctuations is de-
creasing. Detuning affects the revival time by elongating
it and the maximum value of the entanglement degree be-
comes less and less. The same situation has been consid-
ered in Figure 4b, but with smaller mean photon number
n = 1. In these figures we have shown for some parameters
the entanglement degree tends to zero. Of course the total
atom-field state can not have its purity diminished, which
means that as the field becomes more pure the atomic
state must be closer to a mixed state. It should be noted

(a)

(b)

Fig. 4. The evolution of the entanglement degree IE∗
t ρ

(
ρA

t , ρF
t

)
as functions of the scaled time γ1t. ς3 = 0 and ς1 = 0.8, f(n) =
1. The field initially in a coherent state. ∆ = 1 (sold curve),
∆ = 5 (dashed-curve) and ∆ = 10 (dotted-curve). (a) n̄ = 5
and (b) n̄ = 1.

that at a special choice of the atom-field coupling con-
stants, such as γ1/γ2 � 1 or γ1/γ2  1, the entanglement
degree exhibits superstructures instead of the first-order
revivals resembling those manifested by the standard two-
level system [9].

The remaining task is to identify and compare the
results presented above for the entanglement degree
IE∗

t ρ(ρA
t , ρ

F
t ) with another accepted entanglement mea-

sure such as the negativity. The question of the ordering of
entanglement measures was raised in reference [2]. It was
proved that all good asymptotic entanglement measures
are either identical or fail to uniformly give consistent
orderings of density matrices [45]. The best understood
case, not surprisingly, is the simplest. Thus another en-
tanglement measure to consider can be defined in terms of
the negative eigenvalues of the partial transposition of the
density operator, which takes the following form [6,46,47]

IE∗
t ρ (t) = 2 max

{
0,−λ−neg

}
, (25)

where λ−neg is the sum of the negative eigenvalues of the
partial transposition of the reduced atomic density ma-
trix ρa, which can be obtained by tracing out the field
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variables. One, possibly not very surprising, principal ob-
servation is that the numerical calculations corresponding
to the same parameters, which have been considered in
Figures 2–4, give nearly the same behaviour. This means
that both the entanglement due to the quasi-mutual en-
tropy and negativity measures are qualitatively the same.
We must stress, however, that no single measure alone
is enough to quantify the entanglement in a multilevel
system.

Before we conclude, it may be profitable to give a
brief discussion on the experimental realization of the
present model. It was reported that [48] the cavity can
have a photon storage time of T = 1 ms (correspond-
ing to Q = 3 × 108). The radiative time of the Rydberg
atoms with the principle quantum numbers 49, 50 and 51
is about 2 × 10−4 s. In order to realize such a scheme in
laboratory experiment within microwave region, we may
consider slow Rb atoms in higher Rydberg states which
have life time of the order of few milliseconds [49]. These
slow atoms, initially pumped to high Rydberg state, pass
through a high-Q superconducting cavity of dimension of a
few centimeters with a velocity of around 400 m/s [49,50].
The interaction times of atom with the cavity modes come
out to be of the order of few tens of microseconds which
is far less than the cavity life time. The high-Q cavities
of life time of the order of millisecond are being used in
recent experiments [50].

5 Summary

In this paper, we have developed a general entanglement
measure technique to study the three-level quantum sys-
tem interacting with a cavity-field and have shown that
using quantum mutual entropy to calculate the entangle-
ment degree open new possibilities for better understand-
ing of multi-level systems interactions when the system
initially starts from a mixed state. It is noteworthy that
our approach can be applied to any three-level system in-
teraction. As a result we obtained exact expression for the
entanglement degree due to the quantum mutual entropy,
highlighting the role of the intensity-dependent coupling
contributions and detuning on the three-level atom inter-
acting with a single cavity mode. Our main aspects are
summarized as follows.

(i) We have derived the general analytical expressions
for the entanglement degree, which are suitable for
any three-level system.

(ii) For the V-type case, we have discussed how intensity-
dependent coupling and detunings affect the entan-
glement degree. Under the proper conditions strong
entanglement with a large number of photons can be
easily produced in this novel scheme.

(iii) We have analyzed how the entanglement degree
changes with changing the mixed state parameters.
In all cases we have shown that, the entanglement
degree is always decreases with increasing the mixed
state parameter ς1.

(iv) Our results indicate that it is perfectly possible to
measure the entanglement degree in a general three-
level system.

Finally, it should be mentioned that one can try to
apply the strategy developed in this paper to the case
in which atomic detuning and spontaneous emission are
present.
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